First-Order Linear Differential Equations

•

- First-Order Linear Differential Equations: $\frac{dy}{dx} + P(x)y = Q(x)$ $\circ \mu(x) = e^{\int P(x)dx} \left(\mu'(x) = P(x)e^{\int P(x)dx} \right)$ Integrating factor. $\circ \frac{dy}{dx}e^{\int P(x)dx} + P(x)e^{\int P(x)dx}y = Q(x)e^{\int P(x)dx}$ Multiply through. $\circ \frac{dy}{dx}\mu(x) + \mu'(x)y = Q(x)\mu(x)$ Rewrite $\circ (\mu(x)y)' = Q(x)\mu(x)$ Use product rule! $\circ y = \frac{1}{\mu(x)}\int Q(x)\mu(x)dx$ Solution
 - Further idea:
 - $y = e^{-\int P(x)dx} \int Q(x)e^{\int P(x)dx} dx$ Add C.

•
$$y = e^{\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx} dx + C \right)$$

•
$$y = e^{-\int P(x)dx} \int Q(x)e^{\int P(x)dx} dx + Ce^{-\int P(x)dx}$$

- Note that this solution contains two parts.
- One part is the steady-state (long term) solution $e^{-\int P(x)dx} \int Q(x)e^{\int P(x)dx} dx$,

which predicts long term behavior and does not depend on the initial condition.

- The other part is the **transient** $Ce^{-\int P(x)dx}$, which depends on the initial condition, but will approach zero in the long term. Note, *C* corresponds to the initial condition.
- Applications:
 - Fluid friction and air resistance
 - Electrical circuits
 - Capacitor and inductor problems (RC circuit, RL circuit)
 - Diffusion

Bernoulli Differential Equations

$$\circ \quad \frac{dy}{dx} + P(x)y = Q(x)y$$

- Substitution: $z = y^{1-n}$ $dz = (1-n)y^{-n}dy$
- Then solve as a first-order linear differential equation
- Applications:
 - Fluid dynamics
 - Leaking tank (using Bernoulli's principle)